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The problem of gas motion inside a resonance tube, closed at one end by a plug and
fitted at the other with an oscillating piston is treated analytically and numerically.
An analytical model is derived for arbitrary piston motion and gas oscillations
about the first resonance frequency, where the gas flow is characterized by a shock
wave travelling periodically back and forth in the tube. The model is obtained by a
perturbation analysis in terms of a small-amplitude parameter ε. All the hydrodynamic
properties of the gas are predicted with accuracy up to the second-order terms of ε.
Isentropic and adiabatic problem formulations are addressed. Expressions for spatial
distributions of the time-averaged hydrodynamic gas properties are derived for any
frequency within the resonance band. It is shown that they are determined by the
gas adiabatic exponent γ and the law that governs the motion of the piston. The
analytical model is verified by comparison with a numerical solution, showing good
agreement.

1. Introduction
The present paper deals with modelling of thermal processes caused by gas

oscillations in a closed tube, which were described by Sprenger (1954), Saenger &
Hudson (1960) and Merkli & Thomann (1975b). The authors of the first two papers
have found in their experiments that travelling shock waves result in an increase in
the average temperature and pressure at the closed end of the tube, while the authors
of the last paper demonstrated that not only heating, but also cooling is possible in
the tube, where standing acoustic waves are generated.

In the work of Merkli & Thomann (1975b), the first analytical treatment for
the energy transport processes was given. Previous treatments of this problem in
acoustic oscillations in a tube were restricted to overall energy balances (see e.g.
Betchov 1958; Gulyaev & Kuznetsov 1963; Temkin 1968). Merkli & Thomann (1975b)
explained the unusual distribution of the heat flux within the so-called resonance
tube, i.e. a tube closed at one end by a plug and fitted at the other with an
oscillating piston. The key to the understanding of this distribution is in the existence
of ‘thermoacoustic streaming’, a phenomenon which is analogous to the acoustic
streaming first described by Rayleigh (1945). Thermoacoustic streaming is a second-
order effect, which describes the time-averaged heat flux associated with wall friction.
Lawrenson et al. (1998) have shown that a proper choice of the geometric shape of
a resonator can significantly amplify the transport processes, which are important for
such industrial applications as thermoacoustic engines, refrigerators, etc.
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A review of linear acoustic streaming (including thermal effects in boundary layers)
was presented by Riley (1997). Riley (2001) and Riley & Trinh (2001) demonstrated
that a non-conservative oscillating force may induce streaming even within an inviscid
fluid.

The aforementioned papers by Merkli & Thomann (1975b) and Lawrenson et al.
(1998), as well as a more recent publication by Ilinskii, Lipkens & Zabolotskaya
(2001), are limited to small driving amplitudes and frequencies far enough from the
resonance in order to prevent shock waves. These restrictions are probably useful for
industrial applications, but do not allow the description of particularly prominent
heat effects, which are of fundamental interest. Since the works of Merkli & Thomann
(1975b) and Saenger & Hudson (1960), neither experimental nor computational results
have been presented on the temperature or pressure gradients that can be produced by
weak shock waves in gas columns at resonance. The theoretical paper by Goldshtein
et al. (1996) concerning these phenomena is restricted to the special case of a fixed
sinusoidal driving frequency and isentropic conditions. These restrictions, which are
inherent for the analytical method of Goldshtein et al. (1996), limit the applicability
of the model. The purpose of the present work is to obtain a basic understanding
of the thermal processes occurring in gas oscillations accompanied by weak shock
waves, and to develop efficient mathematical tools that are free from the above
restrictions.

In general, there are three basic phenomena affecting the thermal processes:
nonlinearity, viscous damping, and heat interactions with the tube. A consistent
theory accounting for the first two of these phenomena was first proposed by Chester
(1964). He expanded the solution in a series of a small-amplitude parameter ε, which
is of the order of the square root of the ratio of the piston amplitude, l̃, and the tube
length, L̃, and showed that a combination of the first- and second-order solutions
satisfies the boundary conditions. Moreover, Chester’s solution predicts the growth of
the gas oscillation amplitude and the transition from a continuous acoustic wave to a
shock wave, when the driving frequency is inside the resonance band. The approach
developed by Chester turned out to be extremely effective and was later modified by
several authors (Rott 1974; Keller 1976). The works by Ilgamov et al. (1996) and
Goldshtein et al. (1996) present a detailed discussion of other relevant studies.

Comparison of Chester’s theory with experiments (see Ilgamov et al. 1996; Alexeev,
Goldshtein & Gutfinger 2002) showed that the model deviation from experiments
increases with the amplitude parameter, ε. At amplitudes ε � 0.1 all existing theories
become unsatisfactory. Aganin, Ilgamov & Smirnova (1996) hypothesized that the
discrepancy between models and experiments may arise due to the effect of energy
dissipation on shock waves, which was not included in the models. More recently,
numerical simulations by Alexeev et al. (2002) have shown that heat interaction
with the tube wall strongly affects gas flow for frequencies within the resonance
band. They proposed a phenomenological model, accounting for heat interaction in
turbulent flows, which provides good agreement with experimental data. The principal
aim of the present work is to develop an analytical model of resonance oscillations
of a gas in a closed tube, which is valid for the ‘large’ amplitudes characterized by
0.1 � ε < 0.3, and to verify the model numerically.

In the present work, we extend the model of Chester to account for temperature,
pressure and density distributions along the tube axis due to nonlinearity and for
energy input by the vibrating piston. In order to understand the effect of thermal
interactions with the walls, we consider an adiabatic model of gas oscillations. The
adiabatic model assumes perfectly insulated walls, leading to an increase in tempera-
ture due to energy dissipation by the shocks. Aiming to obtain a closed-form analytical



Resonance oscillations of an inviscid gas in a closed tube 3

solution of the problem, we simplify our theory by neglecting viscous effects. Since in
real experiments, resonance flow is strongly affected by viscous and heat interactions,
a quantitative comparison of an inviscid theoretical model with experimental data is
hardly possible. Hence, we develop a numerical model complementary to our theory,
and use the numerical solutions to verify the analytical model.

The paper is organized as follows. In § 2, we formulate the basic equations for
isentropic and adiabatic gas models, with the corresponding conditions on the
shock wave and boundary conditions for an arbitrary periodic piston motion. The
generalization of the sinusoidal law of piston motion, which was used in previous
theoretical papers, allows us to approximate more closely the experimental conditions
characterized by larger amplitudes (see e.g. Gulyaev & Kuznetsov 1963; Sturtevant
1974; Shuster et al. 2002). In order to obtain a self-consistent solution of the problem,
we introduce the global mass conservation condition (see Goldshtein et al. 1996). The
solution of the problem is expanded in a series of the small parameter ε up to terms
of the second order.

In § 3, we present the analytical solution of the problem. The first-order solution
is reduced to the problem of free gas oscillation with an initial distribution having
a jump. We show that the general solution of this problem can be expressed via an
arbitrary function, say f (x), which is defined on an interval of double the tube length.
Analysing the second-order solution, we derive a general equation for the arbitrary
function f (x). This equation is a generalization of Chester’s famous equation for
sinusoidal piston motion to the case of arbitrary periodic piston motion. Its analytic
solution is discussed in § 3.3. A solution of the second-order problem is defined
with accuracy to an arbitrary function, which could be obtained from the condition
of solvability of the third-order problem. Rather than doing that, we verify the
accuracy of this approximate solution by comparison with the numerical solution of
the problem. In § 4, we introduce a numerical method used to obtain the solution of
the hydrodynamic equations.

In § 5, we discuss the properties of the derived analytical solution and compare them
with the results of numeric simulations. In § 5.1, we rewrite the analytic solution in
the characteristic form and compare it with Chester’s solution. The comparison shows
that the global mass conservation condition and conditions on the shock wave, which
are omitted in Chester’s model, lead to the appearance of additional second-order
terms in the Riemann invariants. These terms are responsible for the second-order
time-averaged distributions of gas density, temperature and pressure along the tube.
It is shown that the distribution of the hydrodynamic properties is controlled by
the adiabatic exponent and the law of piston motion. The mathematical model of
the thermal processes is of fundamental and practical interest, since it shows how to
reach a desirable distribution of a hydrodynamic property. In § 5.2, we show that the
energy input by the piston is dissipated by the travelling shock waves. This energy
balance condition, which was used by Betchov (1958) and Temkin (1968) for the
closure of their models, is identically satisfied in our model. At the end of § 5, we
derive an analytical model of adiabatic gas heating by the shock wave, and consider
the effects of gas viscosity and thermal conductivity, which create spatial gradients of
the time-averaged gas properties. We summarize our results in § 6.

2. Statement of the problem
2.1. Basic equations

We consider a tube of length L̃ closed at one end by a rigid plug and at the other
by an oscillating piston. The tube is filled by a perfect gas. For the sake of simplicity,
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we neglect the gas viscosity. We impose homogeneous initial conditions, i.e. an initial
state of the gas which is described by a constant density ρ̃0, pressure P̃ 0, temperature

θ̃0 and speed of sound C̃0 =
√

γP̃ 0/ρ̃0. The equations of one-dimensional motion of
an inviscid perfect gas are

∂ρ̃

∂t̃
+

∂ρ̃ũ

∂x̃
= 0, (1a)

∂ũ

∂t̃
+ u

∂ũ

∂x̃
+

1

ρ̃

∂P̃

∂x̃
= 0, (1b)

∂P̃

∂t̃
+ ũ

∂P̃

∂x̃
+ γ P̃

∂ũ

∂x̃
= q̃0, (1c)

where t̃ is time, x̃ is the axial coordinate, γ = c̃p/c̃v is the isentropic exponent, c̃v and
c̃p being the specific heats of the gas at constant volume and pressure, respectively.

Moreover, ρ̃, ũ, P̃ and θ̃ are the gas density, velocity, pressure and temperature,
respectively. An equation of state of a perfect gas is given by

P̃ = R̃ρ̃θ̃ , R̃ = k̃m̃, (2a, b)

where k̃ = 1.3806×10−23 J K−1 is the same constant for all gases and m̃ is the molecular
mass of the gas. Most papers deal with flows in which the entropy is constant
everywhere: these are referred to as homentropic flows. To define a homentropic flow
the volumetric energy supply per unit time should be specified. When q̃0 is negative,
the heat is removed from the tube by external cooling. Such cooling is necessary if
one wants to sustain periodic gas oscillations accompanied by shock waves, which
dissipate mechanical energy into heat. On the other hand, when q̃0 = 0, the generated
heat is accumulated inside the tube leading to an increase in time-averaged gas
temperature. We call the problem adiabatic, when q̃0 = 0.

The energy dissipated in a shock wave is

Ẽsh = θ̃�S̃, (3)

where �S̃ is the entropy increase due to irreversible processes. We limit our
consideration to the case of weak shock waves, for which the pressure jump across
the shock is much smaller than the initial pressure, �P̃ � P̃ 0. When shock waves are
weak, the entropy increase over a shock is of order (�P̃/P̃ 0)

3 and equals

�S̃ = c̃v

γ − 1

12γ 2

(
�P̃

P̃ 0

)3

. (4)

When �P̃/P̃ 0 � 1, one can neglect the irreversibility due to shocks and replace the
energy conservation equation (1c) by the following isentropic relation:

P̃ = P̃ 0

(
ρ̃

ρ̃ 0

)γ

. (5)

We consider a long tube closed by a solid plug at x̃ = 0 and by an oscillating piston
at x̃ = L̃. The motion of the piston is periodic with a period T̃ and amplitude l̃ , such
that the piston coordinate at any time is given by

x̃p(t̃) = L̃ + l̃x(2)
p [ω̃(t̃ − t̃∗)]. (6a)

Here, ω̃ = 2π/T̃ is the angular frequency of the oscillation, parameter t̃∗ defines the
initial position of the piston, and x(2)

p (α) is a dimensionless periodical function with
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period 2π and zero average:

x(2)
p (α) = x(2)

p (α + 2π), (6b)

2π∫
0

x(2)
p (α) dα = 0. (6c)

Without any loss of generality, one can define this function in such a way that x(2)
p (0)

corresponds to the instroke position of the piston

x(2)
p (0) = x

(2)
in , (6d)

where x
(2)
in ≡ min

α
x(2)

p (α). In the majority of works dealing with gas oscillations in a

resonance tube, a sinusoidal law of piston motion is adopted in the form

x(2)
p (α) = − cos α. (7)

In many experiments, however, especially with larger vibrational amplitudes, a crank
mechanism is used for gas excitation. In a crank mechanism, the law of piston motion
x(2)

p (α) differs from that given by (7). A more accurate description can be written
(Shigley & Uicker 1995) as

x(2)
p (α) = − cosα +

√
1 − (λ sin α)2

λ
− 2E(λ2)

λπ
, (8)

where E(λ) is the complete elliptic integral of the second kind, and λ is a parameter
which characterizes the ratio of the crank radius and the connecting-rod length, and
is usually smaller than 1/3. Due to the properties of E(λ), equation (8) satisfies
conditions (6b, c). The latter model is more general than the one given by (7) and
approaches it in the limit λ → 0. In the present study, we derive a solution for the
general function x(2)

p (α), and all the results are illustrated for the particular laws of
piston motion given by equations (7) and (8).

The boundary conditions of the problem can be written in the form

ũ(t̃ , x̃) = 0 at x̃ = 0, (9a)

ũ(t̃ , x̃) = ũp(t̃) at x̃ = x̃p(t̃), (9b)

where ũp(t̃) = dx̃p(t̃)/dt̃ is the speed of the piston. We consider the resonance problem
when the piston angular frequency is within a resonance band about the first
linear resonance frequency ω̃res = 2π/T̃ res, where T̃ res =1/fres = 2L̃/C̃0 is the resonance
period. According to this definition, the resonance period is equal to the time taken
for the shock propagating with the speed of sound to travel along the tube backwards
and forwards. The particular case of strictly resonance oscillations, i.e. ω̃ = ω̃res, was
analysed by Betchov (1958) and Goldshtein et al. (1996). The purpose of the present
paper is to extend this analysis to the whole resonance band, in which gas oscillations
are accompanied by periodic shock waves. Calculation of the bounds of the resonance
band is one of our tasks.

Since the problem includes a shock wave, a jump condition on the shock front
should be imposed. For an inviscid perfect gas, this jump condition can be written in
the form

ρ̃l(Ũ − ũl) = ρ̃r (Ũ − ũr ), (10a)

ρ̃l(Ũ − ũl)
2 + P̃ l = ρ̃r (Ũ − ũr )

2 + P̃ r , (10b)
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Figure 1. Schematic of a resonance tube with global mass conservation condition.

P̃ l

ρ̃l

− P̃ r

ρ̃r

+
γ − 1

2

(
1

ρ̃l

− 1

ρ̃r

)
(P̃ r + P̃ l) = 0, (10c)

where X̃ is the shock position, Ũ is the speed of shock propagation, and indexes l and
r denote the values at the left and right sides of the shock, respectively (see figure 1).

Usually the jump condition is enough to define the position of the shock front.
However, in the case of a resonance tube, an additional condition is needed. For
example, Galiev, Ilgamov & Sadykov (1970) used a condition of time-averaged mass
conservation at any cross-section of the tube. In the present study, we use a condition
of global mass conservation within the tube. In our notation, this condition can be
written (see figure 1) as

X̃(t̃)∫
0

ρ̃l(t̃ , x̃) dx̃ +

x̃p(t̃)∫
X̃(t̃)

ρ̃r (t̃ , x̃) dx̃ = ρ̃0L̃. (11)

We now formulate several different mathematical models of the resonance problem.
We define the model given by equations (1a, b), (5), and conditions (10a, b), (11) as
isentropic. This definition differs from that used in most of the previous papers, which
considered a simplified version of this model in which conditions (10a, b), (11) were
disregarded. The effect of the shock wave and global mass conservation conditions
on isentropic resonance gas oscillations is discussed in § 5.1.

The relevance of the isentropic model to experiments is not obvious, since it
disregards all irreversible processes occurring during gas oscillations. These processes
can significantly modify the flow, especially for long times. However, due to the
asymptotic nature of resonance oscillations, the isentropic model can be extended to
describe a physically more realistic situation by accounting for heat production, and
thermal and viscous interactions between gas and tube wall. It follows from equations
(3), (4) that the heat produced by a weak shock wave is of order ε3, and defined by
terms of order ε. This means that the first-order solution of the isentropic problem
can serve as a basis for the calculation of external cooling q̃0, which removes the
energy dissipated by the shock and preserves the periodic nature of gas oscillations
(see § 5.2). We call such a flow pseudo-isentropic.

Solutions of the isentropic model can be used to mimic an adiabatic process, which
occurs when the tube walls are perfectly insulated. Adiabatic resonance oscillations are
non-periodic due to continuous gas heating. Strictly speaking, the adiabatic model
is given by equations (1a–c) with q̃0 = 0, and shock conditions (10a–c). However,
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isentropic relation (5) satisfies equation (1c) and condition (10c) with accuracy of ε2.
Equation (10c) is more general than equations (3), (4), which hold for weak shock
waves only. For the case of weak shocks both are identical with accuracy of ε3.
We also note that gas oscillations and gas heating by shock waves have different
time scales: the first process occurs for a period of T̃ res, and the second for T̃ resε

−2.
This prompts the idea of modelling the adiabatic process as a superposition of two
processes: rapid gas oscillations, which are accompanied by slow heat production in
the gas. A simple analytical model of heat production in an adiabatic gas is discussed
in § 5.3.

Let us define the following dimensionless variables and functions:

x = x̃/L̃, t = t̃ C̃0/L̃, u = ũ/C̃0, ρ = ρ̃/ρ̃0, P = P̃ /
(
ρ̃0C̃

2
0

)
. (12)

Hence, the dimensionless tube length L, initial density, ρ0, and speed of sound, C0,
are equal to unity, while the dimensionless period of resonance oscillations T0 = 2 and
the dimensionless initial pressure P0 = 1/γ .

The general solution of the problem of resonance gas oscillations includes a
discontinuity. We are looking for a solution consisting of two continuous parts
separated by a shock front (see figure 1). We call the solution at the left of the
shock the left-side wave solution and at the right of the shock the right-side wave
solution. Moreover, we denote all hydrodynamic properties describing these left-side
and right-side waves by indexes l and r , respectively. Using (1a, b), the isentropic
relation (5) and the dimensionless values (12), one obtains the equations of motion
of the continuous parts as follows:

∂ρβ

∂t
+ ρβ

∂uβ

∂x
+ uβ

∂ρβ

∂x
= 0, (13a)

∂uβ

∂t
+ uβ

∂uβ

∂x
+ ρ

γ −2
β

∂ρβ

∂x
= 0. (13b)

Here, index β stands for either l or r . Boundary conditions (9a, b) in dimensionless
form are

ul(t, x) = 0 at x = 0, (14a)

ur (t, x) = up(τ ) at x = xp(τ ), (14b)

where the piston coordinate xp(τ ) and speed up(τ ) are

xp(τ ) = 1 + ε2
x(2)

p (α)

π
, (15a)

up(τ ) =
T0

T
ε2 d

dα
x(2)

p (α), (15b)

α = π(τ − τ∗). (15c)

Here, τ = tT0/T , τ∗ = t∗T0/T and ε =
√

πl̃/L̃, while xp(τ ) and up(τ ) are periodic
functions with a period T0. We restrict the analysis to the small piston amplitudes
l̃ � L̃, which implies that the parameter ε is small, ε � 1. Smallness of ε allows us to
investigate the resonance problem by expanding the hydrodynamic equations (Chester
1964) and the subsidiary conditions (Goldshtein et al. 1996) in appropriate series.

Using (5) together with (12), we rewrite the jump conditions (10a, b) and global
mass conservation condition (11) in dimensionless form as

ρl(U − ul) = ρr (U − ur ), (16a)
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ρl(U − ul)
2 + ρ

γ
l /γ = ρr (U − ur )

2 + ργ
r /γ, (16b)

X(t)∫
0

ρl(t, x) dx +

xp(t)∫
X(t)

ρr (t, x) dx = 1. (17)

As mentioned earlier, condition (16b) is accurate up to the second order, while (16a)
and (17) are always accurate.

Experiments show that resonance gas oscillations in closed tubes are periodic with
a period T equal that of piston oscillations. We impose this periodicity condition on
the solution of the resonance problem such that

Γ (t, x) = Γ (t + T , x), (18)

where Γ denotes any gas property. Now the isentropic problem of resonance gas
oscillations can be formulated as a solution of (13), which satisfies to the boundary
conditions (14), the conditions at the shock front (16), the global mass conservation
condition (17) and the periodicity condition (18).

A solution of the resonance problem, which is obtained by the perturbation method,
is discussed in the following subsections.

2.2. Perturbation method

We expand all hydrodynamic properties in series with respect to a small parameter ε.
For the case of isentropic flow characterized by (5), the series for the hydrodynamic
density, velocity, pressure and temperature can be written as follows:

ρβ(τ, x) = 1 + ερ
(1)
β (τ, x) + ε2ρ

(2)
β (τ, x), (19a)

uβ(τ, x) = εu
(1)
β (τ, x) + ε2u

(2)
β (τ, x), (19b)

Pβ(τ, x) =
1

γ
+ ερ

(1)
β (τ, x) + ε2

[
ρ

(2)
β (τ, x) +

γ − 1

2

(
ρ

(1)
β (τ, x)

)2

]
, (19c)

θβ(τ, x) =
1

γ
+ ε

γ − 1

γ

[
ρ

(1)
β (τ, x) + ερ

(2)
β (τ, x) + ε

γ − 2

2

(
ρ

(1)
β (τ, x)

)2

]
. (19d)

For the sake of simplicity, we express all the hydrodynamic properties in the above
equations as functions of τ rather than t . In terms of τ , the periodicity condition (18)
is simplified to

Γ (τ, x) = Γ (τ + 2, x). (20)

Saenger & Hudson (1960) showed that the increase of gas oscillation amplitude
and the transition from continuous acoustic waves to shock waves occurs when the
driving frequencies are close to the linear resonance frequency. The band of driving
frequencies for which an oscillating shock wave appears is called the resonance band.
Calculation of the width of the resonance band is one of the goals of our paper.
When viscous effects are disregarded, the only parameter affecting the width of the
band is ε. We assume that the period of the piston oscillations T is close to the
resonance period T0, and expand T in a series of the small parameter ε as follows:

T = T0 + εT1 = 2 + εT1. (21)

We show below that the detuning parameter T1 delineates the resonance band with
an error of the order of ε3 rather than ε2.
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Substitution of expansions (19a, b) into (13) yields
first order of ε

∂u
(1)
β (τ, x)

∂τ
+

∂ρ
(1)
β (τ, x)

∂x
= 0, (22a)

∂ρ
(1)
β (τ, x)

∂τ
+

∂u
(1)
β (τ, x)

∂x
= 0; (22b)

second order of ε

∂u
(2)
β (τ, x)

∂τ
+

∂ρ
(2)
β (τ, x)

∂x
= ϕ

(
u

(1)
β , ρ

(1)
β

)
, (23a)

∂ρ
(2)
β (τ, x)

∂τ
+

∂u
(2)
β (τ, x)

∂x
= ψ

(
u

(1)
β , ρ

(1)
β

)
, (23b)

where

ϕ
(
u

(1)
β , ρ

(1)
β

)
=

T1

2

∂u
(1)
β (τ, x)

∂τ
− u

(1)
β

∂u
(1)
β (τ, x)

∂x
− (γ − 2)ρ(1)

β

∂ρ
(1)
β (τ, x)

∂x
, (23c)

ψ
(
u

(1)
β , ρ

(1)
β

)
=

T1

2

∂ρ
(1)
β (τ, x)

∂τ
− ρ

(1)
β

∂u
(1)
β (τ, x)

∂x
− u

(1)
β

∂ρ
(1)
β (τ, x)

∂x
. (23d)

Expansion of the boundary conditions (14) leads to

first order of ε

u
(1)
l (τ, 0) = 0, (24a)

u
(1)
l (τ, 1) = 0; (24b)

second order of ε

u
(2)
l (τ, 0) = 0, (25a)

u(2)
r (τ, 1) = ẋ(2)

p [π(τ − τ∗)]. (25b)

Additionally, one can expand the dimensionless shock wave speed, U (τ ), and the
coordinate of the shock front, X(τ ), in the following series:

U (τ ) = U (0)(τ ) + εU (1)(τ ), (26a)

X(τ ) = X(0)(τ ) + εX(1)(τ ). (26b)

Here, we drop the second-order terms, since they do not affect the solution of (22)
and (23). At the zeroth order, the speed of the shock is U (0)(τ ) = 1 for a shock wave
travelling from the left to the right of the tube, and U (0)(τ ) = −1 for a shock wave
travelling in the opposite direction. The piston motion is described by (15) in terms
of ε2 and, apparently, does not affect gas oscillations at the zeroth- and first-order
approximations. Hence, in the zeroth-order approximation, the speed of the shock
front is equal to ±1 and the trajectory of the shock front is a zigzag line as shown in
figure 2. Choosing the time of the shock wave reflection from the plug as the initial
time, one can write X(τ ) in the form

X(τ ) =

{
τ + εX(1)(τ ), 0 < τ < 1,

−τ + εX(1)(τ ), −1 < τ < 0.
(27a)

Since, X(τ ) is a periodic function with a period 2, it can be periodically continued
for τ < −1 and τ > 1. In particular, the shock wave reflects from the plug (x = 0)
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Piston trajectory x

1

0 1–1

Shock wave trajectory

τ

Figure 2. Space–time diagram of resonance oscillations for different approximations of a
shock wave trajectory. The dashed lines indicate the zero-order approximation, while the
dashed-dotted lines indicate the first-order approximation.

at τpl = ±2, ±4, ±6 . . . and from the piston (x = 1) at τp = ± 1, ±3, ±5 . . . . Hence,
X(1)(τ ) does not affect τpl and τp , as shown in figure 2, and only distorts the shock
wave trajectory. Taking into account the relations between the shock coordinate and
velocity, one can obtain from (27a) the following equation for the shock velocity:

U (τ ) =




2/T + ε
d

dτ
X(1)(τ ), 0 < τ < 1,

−2/T + ε
d

dτ
X(1)(τ ), −1 < τ < 0.

(27b)

Equations (27a, b) define the shock wave coordinate and speed, respectively, with
second-order accuracy.

After substitution of (15) and (26b) into the global mass conservation condition
(17), we obtain density conservation conditions ρ

(1)
β and ρ

(2)
β as follows:

X(0)∫
0

ρ
(1)
l (τ, x) dx +

1∫
X(0)

ρ(1)
r (τ, x) dx = 0, (28a)

X(0)∫
0

ρ
(2)
l (τ, x) dx +

1∫
X(0)

ρ(2)
r (τ, x) dx

= − 1

π
x(2)

p [π(τ − τ∗)] + X(1)(τ )
[
ρ

(1)
l (τ, x) − ρ(1)

r (τ, x)
]
x=X(0)(τ )

. (28b)

Expansion (19a) is normalized in such a way that the total mass of the gas is
accounted for in the term of zeroth order of ε. Hence, each perturbation of the
homogeneous solution, given by the zeroth-order approximation, does not affect the
total mass of the gas. Equations (28a, b) merely express this fact for the first and
second orders of ε. The right-hand side of the first-order equation (28a) is equal to
zero, while in the second-order equation (28b), the right-hand side has two terms,
which account for the piston motion and shock acceleration.

Substitution of the series from (19a, b) and (26a, b) into the jump conditions (16)
yields at x =X(0)(τ ):

first order of ε

U (0)(τ )ρ(1)
l (τ, x) − u

(1)
l (τ, x) = U (0)(τ )ρ(1)

r (τ, x) − u(1)
r (τ, x); (29a)



Resonance oscillations of an inviscid gas in a closed tube 11

second order of ε

U (0)(τ )ρ(2)
l (τ, x) − u

(2)
l (τ, x) + ρ

(2)
l (τ, x)

[
U (1)(τ ) − u

(1)
l (τ, x)

]
+ X(1)(τ )

∂

∂x

[
U (1)(τ )ρ(2)

l (τ, x) − u
(1)
l (τ, x)

]
= U (0)(τ )ρ(2)

r (τ, x) − u(2)
r (τ, x) + ρ(2)

r (τ, x)
[
U (1)(τ ) − u(1)

r (τ, x)
]

+ X(1)(τ )
∂

∂x

[
U (1)(τ )ρ(2)

r (τ, x) − u(1)
r (τ, x)

]
(29b)

where

U (1)(τ ) =
γ − 1

4

[
ρ

(1)
l (τ, x) + ρ(1)

r (τ, x)
]
U (0)(τ ) +

1

2

[
u

(1)
l (τ, x) + u(1)

r (τ, x)
]
. (29c)

3. Solution of the problem
3.1. First-order solution

In this section, we discuss a general solution of (22) with the boundary conditions
(24) and condition (29a) at the shock front. Following Chester (1964), we look for a
solution that is a combination of those for two continuous waves, one on the left and
one on the right side of the shock. Such a solution can be expressed via an arbitrary
function f (x), say, which is defined on an interval −1 < x < 1 and has two continuous
derivatives within this interval. The solution of (22) with conditions (24) and (29a) is
given as follows:

for the right-side wave

u(1)
r (τ, x) = f ′(τ + x − 1) − f ′(τ − x + 1), (30a)

ρ(1)
r (τ, x) = −f ′(τ + x − 1) − f ′(τ − x + 1); (30b)

for the left-side wave

u
(1)
l (τ, x) =

{
f ′(τ + x − 1) − f ′(τ − x − 1), 0 < τ < 1,

f ′(τ + x + 1) − f ′(τ − x + 1), −1 < τ < 0,
(30c)

ρ
(1)
l (τ, x) =

{−f ′(τ + x − 1) − f ′(τ − x − 1), 0 < τ < 1,

−f ′(τ + x + 1) − f ′(τ − x + 1), −1 < τ < 0.
(30d)

To specify f (x), we use the global mass conservation condition (28a). Substitution of
(30b) and (30d) into (28a) and integration yields

f (1) − f (−1) = 0. (31)

It follows from this result that the average value of f ′(x) over one period is zero. This
property was postulated by Chester (1964), and, as shown above, is a consequence of
the global mass conservation condition.

We now discuss the physical meaning of the function f ′(x) appearing (30). Let
continuous functions u

(1)
l (−1, x) and ρ

(1)
l (−1, x) be the gas velocity and density

distributions at time τ = −1. With these functions and (30c, d), f ′(x) is expressed
as

f ′(x) =
[
u

(1)
l (−1, x) − ρ

(1)
l (−1, x)

]
/2, (32a)

f ′(−x) = −
[
u

(1)
l (−1, x) + ρ

(1)
l (−1, x)

]
/2. (32b)
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(a)

(b)

Shock front

Shock front

u = 2x

f ′(– x)

f ′(x – 2)

f ′(1 – x)

f ′(x – 1)

f ′(x)f ′(– 2 – x)

f ′(– x – 1)

–1

–1

1

1

2

2

0

0

x

x

u = 2x – 2

Figure 3. Gas motion at resonance as predicted by solution (30a, c) for the special case of
f (x) = x2/2. (a) τ = −1, (b) τ = 0.

These relations show that the function f ′(x) is determined completely and
unambiguously by the initial conditions of the problem and vice versa. Since u

(1)
l (−1, x)

and ρ
(1)
l (−1, x) are continuous within the interval [0, 1], the function f ′(x) has no

jumps in the intervals [0, 1] and [−1, 0]. For f ′(x) to be continuous in the interval
[−1, 1], it is required that limx→0 u

(1)
l (−1, x) = 0. Imposing a similar condition at x =1,

i.e. limx→1 u
(1)
l (−1, x) = 0, leads to f ′(1) = f ′(−1), which holds for a solution without

discontinuities. Hence, the function f ′(x) should be periodic with a period of 2.
The solution of such a problem can be found in many textbooks describing free
oscillations without shocks of a gas confined between two rigid walls.

We are now looking for a solution with a discontinuity for which f ′(1) �= f ′(−1).
Equation (30) provides a generalization of the classical solution for the case of
an initial condition with a discontinuity. It is valid for a single period and may
be extended to larger times by periodical continuation. We illustrate the solution
with the example of a parabolic function f (x) = x2/2, leading to f ′(x) = x defined
on −1 <x < 1. We consider the velocity at a fixed time τ = −1. At this moment,
the function is continued periodically by profiles f ′(x + 2n) and f ′(−x + 2n),
where n= ±1, ±2, . . . (see figure 3a). Solution (30a, c) on the segment 0<x < 1,
corresponding to the tube length, is expressed via four functions f ′(τ + x − 1),
f ′(τ − x + 1), f ′(τ + x + 1) and f ′(τ − x − 1), which degenerate for τ = −1 into
profiles f ′(x − 2), f ′(−x), f ′(x), and f ′(−2 − x) shown in figure 3(a). Functions
depicted by dashed lines move in the positive direction, while those depicted by
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dash-dotted lines in the negative direction. All these functions propagate with the
speed of sound. As shown, the discontinuity representing the shock front is at the
tube end, x =1, and the left-side solution (30c) describes the gas velocity everywhere
in the tube. From (30c), one obtains for τ = −1 the gas velocity along the tube as
u = 2x, shown by the solid line in figure 3(a). As the time τ increases, the profiles
propagate along the x-axis. The arrows in figure 3(a) show the direction of the profile
propagation.

During the time interval −1 < τ < 0, profiles f ′(τ + x − 1) and f ′(τ + x + 1)
propagating in the negative direction describe a velocity jump, �u =2 moving in
the same direction. The continuous part of the velocity is described by the function
f ′(τ − x + 1), moving in the positive direction. At τ = 0, the discontinuity is located
at x =0 as seen in figure 3(b). At this moment, the right-side solution (30a) describes
the gas velocity along the whole tube as u =2x −2. During the time interval 0 <τ < 1,
the functions f ′(τ + x − 1), f ′(τ − x + 1) and f ′(τ − x − 1) constitute the solution
(30a, c). At τ = 0, these functions degenerate into the profiles f ′(x − 1), f ′(1 − x) and
f ′(−1 − x) depicted in figure 3(b). The second profile contributes to the continuous
part of the solution only, while the others generate the shock wave, which propagates
in the positive x-direction. At τ = 1, when the shock wave reaches x = 1, the profiles
are identical to those at τ = −1 (figure 3a) and the motion repeats itself.

Substitution of (30) and (27a) into the jump condition (29c) yields the following
expression for U (1):

U (1)(τ ) =




3 − γ

2
f ′(2τ − 1) − γ + 1

4
[f ′(1) + f ′(−1)], 0 < τ < 1,

3 − γ

2
f ′(2τ + 1) +

γ + 1

4
[f ′(1) + f ′(−1)], −1 < τ < 0.

(33)

Comparing this expression with (27b) and using (21), we express T1 and X(1) via the
function f (x) as

T1 =
γ + 1

2
[f ′(1) + f ′(−1)], (34a)

dX(1)τ

dτ
=




3 − γ

2
f ′(2τ − 1), 0 < τ < 1,

3 − γ

2
f ′(2τ + 1), −1 < τ < 0.

(34b)

In order to obtain X(1), equation (34b) should be integrated with a zero initial
condition, since the shock wave reflects from the plug at τ = 0. After integration, we
obtain

X(1)(τ ) =




3 − γ

4
[f (2τ − 1) − f (−1)], 0 < τ < 1,

3 − γ

4
[f (2τ + 1) − f (1)], −1 < τ < 0.

(35)

Due to the property (31), X(1) vanishes at the instant of shock reflection from the
walls, i.e. at τ = −1, 0, 1. For simplicity and without loss of generality, we assume

f (1) = f (−1) = 0. (36)

Equations (30), (33)–(36) yield the first-order general solution of the problem described
by (22), (24), (28a) and (29a). This solution is expressed via an unknown function
f ′(x), which is determined in the following subsection.
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3.2. Second-order solution

We introduce the following variables:

z = τ + x − 1, (37a)

y = τ − x + 1 (37b)

and rewrite the solution given by (30) in the form

u(1)
r (y, z) = f ′(z) − f ′(y), (38a)

ρ(1)
r (y, z) = −f ′(z) − f ′(y), (38b)

u
(1)
l (y, z) =

{
f ′(z) − f ′(y − 2), 0 < τ < 1,

f ′(z + 2) − f ′(y), −1 < τ < 0,
(38c)

ρ
(1)
l (y, z) =

{
−f ′(z) − f ′(y − 2), 0 < τ < 1,

−f ′(z + 2) − f ′(y), −1 < τ < 0.
(38d)

Variables y and z are the leading-order terms in the expansion of the characteristics,
as shown in § 5.1, below.

We turn to the equations governing the second approximation of the solution. The
first-order solution (38a, b) can be combined with (23) to yield the following equations
for the right-side wave:

∂

∂z

[
u(2)

r (y, z) + ρ(2)
r (y, z)

]
=

ϕ(y, z) + ψ(y, z)

2
, (39a)

∂

∂y

[
u(2)

r (y, z) − ρ(2)
r (y, z)

]
=

ϕ(y, z) − ψ(y, z)

2
, (39b)

where

ϕ(y, z) = (3 − γ )[f ′(y)f ′′(z) − f ′(z)f ′′(y)]

+ (γ − 1)[f ′(y)f ′′(y) − f ′(z)f ′′(z)] − T1

2
[f ′′(y) − f ′′(z)] (39c)

ψ(y, z) = 2f ′(y)f ′′(y) + 2f ′(z)f ′′(z) − T1

2
[f ′′(y) + f ′′(z)]. (39d)

The equations for the left-side wave can be obtained by substitution of variables
{y − 2, z} for 0<τ < 1 and {y, z + 2} for −1 < τ < 0 instead of the variables {y, z}
into (39). Hence, the left-side wave solution is

∂

∂z

[
u

(2)
l (y, z) + ρ

(2)
l (y, z)

]
=

{
[ϕ(y − 2, z) + ψ(y − 2, z)]/2, 0 < τ < 1,

[ϕ(y, z + 2) + ψ(y, z + 2)]/2, −1 < τ < 0,
(40a)

∂

∂y

[
u

(2)
l (y, z) − ρ

(2)
l (y, z)

]
=

{
[ϕ(y − 2, z) − ψ(y − 2, z)]/2, 0 < τ < 1,

[ϕ(y, z + 2) − ψ(y, z + 2)]/2, −1 < τ < 0.
(40b)

It is important to note that (39a, b) and (40a, b) are independent and can be integrated
over y and z. Therefore, an analytical solution for these equations can be obtained
up to unknown functions of y and z. The unknown functions can be found through
the conditions of the second-order approximation. The condition at the shock wave
front (29b) can be expressed in terms of the variables y and z from (33)–(38) as[

ρ(2)
r − u(2)

r

]
−

[
ρ

(2)
l − u

(2)
l

]
=

(
3 − γ

4

)
[f ′(1) − f ′(−1)][2f ′(z) + f ′(1) + f ′(−1)], y = 1, (41a)
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ρ(2)

r + u(2)
r

]
−

[
ρ

(2)
l + u

(2)
l

]
=

(
3 − γ

4

)
[f ′(1) − f ′(−1)][2f ′(y) + f ′(1) + f ′(−1)], z = 1. (41b)

The periodicity condition (20) reduces to

ρ
(2)
l

∣∣
τ=−1

= ρ
(2)
l

∣∣
τ=1

, (42a)

u
(2)
l

∣∣
τ=−1

= u
(2)
l

∣∣
τ=1

. (42b)

For the global mass conservation condition (28b), we obtain

±τ∫
0

ρ
(2)
l (τ, x) dx +

1∫
±τ

ρ(2)
r (τ, x) dx = − 1

π
x(2)

p [π(τ − τ∗)]

+

(
3 − γ

4

)
[f ′(1) − f ′(−1)][f ′(2τ ± 1) − f ′(−1)], (43)

where the plus sign stands for 0<τ < 1, while the minus sign is for −1 <τ < 0. A
solution of the problem (39) and (40) can be presented in the following form:

u(2)
r = Ψ (x, y, z) +

T1

2
[(τ − 1)f ′′(z) − (τ + 1)f ′′(y)], (44a)

ρ(2)
r = Ω(x, y, z) − T1

2
[(τ − 1)f ′′(z) + (τ + 1)f ′′(y)], (44b)

u
(2)
l =




Ψ (x, y − 2, z) +
T1

2
(τ − 1)[f ′′(z) − f ′′(y)], 0 < τ < 1,

Ψ (x, y, z + 2) +
T1

2
(τ + 1)[f ′′(z) − f ′′(y)], −1 < τ < 0,

(44c)

ρ
(2)
l =




Ω(x, y − 2, z) − T1

2
(τ − 1)[f ′′(z) + f ′′(y)], 0 < τ < 1,

Ω(x, y, z + 2) − T1

2
(τ + 1)[f ′′(z) + f ′′(y)], −1 < τ < 0,

(44d)

where

Ψ (x, y, z) =
(3 − γ )

4
[f (y)f ′′(z) − f (z)f ′′(y)]

+
(3 − γ )

8
[f ′(y)f ′′(y) − f ′(z)f ′′(z)]

+
(γ + 1)

2
x[f ′(y)f ′′(y) − f ′(z)f ′′(z)], (44e)

Ω(x, y, z) =
(3 − γ )

4
[2f ′(y)f ′(z) − f (z)f ′′(y) − f (y)f ′′(z)]

+
(3 − γ )

8
[f ′(z)f ′(z) − f ′(y)f ′(y)]

+
(γ + 1)

2
x[f ′(y)f ′′(y) − f ′(z)f ′′(z)] + Cρ. (44f)

Here, Cρ is a constant to be evaluated. Equation (44) satisfies the condition at
the shock front (41), the boundary condition at the plug (25a) and the periodicity
condition (42).
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Substitution of (44a, c, e) into (25b) leads to the following equation for the unknown
function f ′(τ );

(γ + 1)f ′(τ )f ′′(τ ) − T1f
′′(τ ) = ẋ(2)

p [π(τ − τ∗)]. (45)

This equation was derived and solved by Chester (1964) for the particular case of
piston motion given by (7). Another expression for the function f can be obtained by
substitution of (44b, d , f ) into global mass conservation condition (43) and integration
leading to

γ + 1

2

[
f ′(τ ) − T1

γ + 1

]2

=
x(2)

p [π(τ − τ∗)]

π
+ E, (46a)

where

E = Cρ − T 2
1

2(γ + 1)
+

γ + 5

4
K, (46b)

K =
1

2

∫ 1

−1

[
f ′(t)

]2
dt. (46c)

We note that (46) is an integral of (45), with E being the integration constant. Due to
the use of condition (43), the integration constant is expressed in terms of parameters
Cρ and E, the physical meanings of which are addressed in the next subsection.

3.3. Solution of the Chester equation

Now we use (46) to calculate the constant Cρ from (44f ). Integrating (46a) over the
period [−1, 1] and taking into account (6c), (36) and (46b), we obtain the constant
Cρ as

Cρ =
T 2

1

γ + 1
+

γ − 3

4
K. (47)

Now, we show that the constant E in (46a) can be expressed in terms of the piston’s
instroke position x

(2)
in of (6d) as

E =
∣∣x(2)

in

∣∣/π. (48)

The left-hand side of (46a) is essentially non-negative, which requires that E � |x(2)
in |/π.

We look for a solution including a shock wave, which implies f ′(1) �= f ′(−1). Taking
into account that a shock wave propagates from the higher to the lower pressure, we
impose the following condition:

f ′(1) − f ′(−1) > 0. (49)

Bearing this in mind, a solution of (46) can be obtained as follows:

f ′(τ ) =




T1

γ + 1
+

A

2

√
�xp(τ ), τ∗ � τ � 1,

T1

γ + 1
− A

2

√
�xp(τ ), −1 � τ � τ∗,

(50a)

where

�xp(τ ) =
x(2)

p [π(τ − τ∗)] − x
(2)
in

2
, (50b)

and the constant A is defined as

A =
4√

π(γ + 1)
. (50c)

Equation (48) provides continuity of the solution (50) at τ = τ∗ corresponding to the
piston instroke position, since �xp(τ∗) = 0 (see (6d)). As (dx(2)

p (α)/dα)|α =0 = 0, the



Resonance oscillations of an inviscid gas in a closed tube 17

derivative of the solution exists at τ = τ∗ providing a smooth connection between the
left and right parts of the solution at this point, and, hence, smoothness of f ′(τ ) over
the period [−1, 1]. Note that substitution of the solution (50) into (34a) for T1 turns
it into an identity.

By definition, τ∗ is equal to the lag between the instant of the shock reflection
from the plug and the instant when the piston is at its instroke position. Experiments
show that this lag unambiguously characterizes a frequency within the resonance
band (Saenger & Hudson 1960). Hence, the period of resonance oscillations can be
expressed as a function of τ∗, i.e. T = T (τ∗). To derive such a function, we need to
calculate T1(τ∗) (see (21)). To this end, we integrate f ′(τ ) given by (50) over the period
[−1, 1] and taking into account (31) obtain

T1(τ∗) =
A(γ + 1)

4


 τ∗∫

−1

√
�xp(τ ) dτ −

1∫
τ∗

√
�xp(τ ) dτ


. (51)

Substitution of this equation and (50) into (46b) and integration over [−1, 1] leads to

K = − T 2
1

(γ + 1)2
+

2

π(γ + 1)

∣∣x(2)
in

∣∣. (52)

Equations (51) and (52) can be substituted into (47) to obtain Cρ as a function of the
parameter τ∗.

The solution (50), (51) defines the first-order terms of hydrodynamic variables via
(38) unambiguously, while the second-order terms defined by (44), (47), (52) determine
the second-order solution with accuracy to an unknown function κ , say, describing
free oscillations of the gas. In § 3.1, we have shown that such a function satisfies the
homogeneous problem. No attempt will be made to calculate the function κ , though
its effect on the solution will be discussed later on.

Using (51), one can characterize the resonance (T1 = 0), pre-resonance (T1 < 0)
and post-resonance (T1 > 0) gas oscillations in terms of the parameter τ∗. Thus, the
resonance oscillations correspond to τ∗ = 0, and the pre-resonant and post-resonance
oscillations to τ∗ ∈ [−1, 0] and to τ∗ ∈ [0, 1], respectively. Hence, the shock waves
begin and end when τ∗ = −1 and τ∗ = 1, respectively. Our model predicts that the
phase lag of shock reflection from the plug changes by 2π radians when the driving
frequency increases from the lower bound of the resonance band, τ∗ = −1, to its upper
bound, τ∗ =1. Other properties of the solution are discussed in the following sections.

4. Numerical solution
To verify the analytical solution, we solve numerically the problem of resonance

gas oscillations. We use an implicit finite difference algorithm of Beam & Warming
(1976). This algorithm has been successfully used for many applications, including
continuous flows and flows with shock waves (Anderson, Tannehill & Pletcher 1984).
We solve (1) with q̃0 = 0 for the adiabatic problem, and (1a, b) and (5) for the isentropic
problem. In both cases, we impose the boundary conditions (9) and the laws of piston
motion given by either (7) or (8). It is important to stress that the numerical solution
intrinsically satisfies the conditions on the shock wave front, rendering it a good tool
for the verification of the analytical model.

The accuracy of the algorithm is of O(�x̃2) in space, and O(�t̃) in time. We use a
grid with a spatial step of �x̃ = x̃p(t̃)/800, and a time marching step of �t̃ = 5×10−4T̃ .
To test the grid quality, its density was increased, and it was found that an increase
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in grid density hardly affects the accuracy of the solution. The homogeneous state
is used as an initial condition of the simulation. The simulation is continued until a
time-periodic solution is obtained.

5. Results and discussion
5.1. Riemann invariants

In the majority of previous studies, analytical solutions of the isentropic problem
were obtained in terms of the Riemann invariants (see, for example, Whitham 1974).
These invariants are

2

γ − 1
ρ(γ −1)/2 ± u = const on

dX

dt
= u ± ρ(γ −1)/2. (53)

This relation means that a combination of the hydrodynamic density and velocity is
conserved on the characteristic. Equation (53) holds for flows without shocks, while
for a flow with a weak shock wave, equation (53) is accurate up to the first order
of the Mach number only (Whitham 1974). Chester (1964) proposed an extension of
(53) accounting for the second-order terms.

In order to emphasize the physical meaning of our solution, we express it in terms
of the Riemann invariants. We introduce new variables:

Z = z + ε
3 − γ

4
f (y) + ε

γ + 1

2
xf ′(z), (54a)

Y = y + ε
3 − γ

4
f (z) + ε

γ + 1

2
xf ′(y). (54b)

Substitution of the right-wave solution (38a, b) and (44a, b) into the invariants (53)
leads to

2

γ − 1
ρ(γ −1)/2 + u =

2

γ − 1
− 2εf ′(Y ) − 3 − γ

4
ε2[f ′(Y )]2 + ε2Cρ, (55a)

2

γ − 1
ρ(γ −1)/2 − u =

2

γ − 1
− 2εf ′(Z) − 3 − γ

4
ε2[f ′(Z)]2 + ε2Cρ. (55b)

Comparing this solution with that of Chester (1964), we see that in Chester’s solution
the terms of order ε2 are absent. Hence, the Chester model describes the characteristics
Z and Y , and the invariants with accuracy of the first order in ε only. The nonlinear
terms of (55), which stem from condition (10a, b) on the shock wave front and global
mass conservation (11), have not been considered until now. We demonstrate the
effect of these terms on the solution in the following section.

Equation (55) presents an expansion of the Riemann invariants in terms of a small
parameter ε. We introduce a new function

R(s) =
2

γ − 1

(
1 + as +

γ − 1

2b
ε2Cρ

)b

, (56a)

where

a = −3γ − 1

4
, (56b)

b = 4
γ − 1

3γ − 1
. (56c)
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Using this function, we rewrite the invariants as

2

γ − 1
ρ(γ −1)/2 + u = R[εf ′(Y )], (57a)

2

γ − 1
ρ(γ −1)/2 − u = R[εf ′(Z)]. (57b)

To obtain an analytical solution, which is accurate up to the second order in ε, one
should calculate f (τ ) and Cρ , and substitute them into (54), (56) and (57). For a
particular case of sinusoidal piston motion x(2)

p (τ ) = − cos π(τ − τ∗), we obtain f (τ )
and Cρ as

f (τ ) =
T1(τ∗)

γ + 1
(1 + τ ) − 4

π3/2
√

γ + 1
(cos π(τ − τ∗)/2 + sin πτ∗/2), (58a)

Cρ =
8(1 − cos πτ∗)

π3
+

(γ − 3)(π2 − 4 + 4 cos πτ∗)

2π3(γ + 1)
, (58b)

where

T1(τ∗) =
4

√
γ + 1

π3/2
sin

(
πτ∗

2

)
. (58c)

The shock wave coordinate X(τ ) is

X(τ ) =

{
τ + εk[sin (πτ − πτ∗/2) + (1 + 2τ ) sin (πτ∗/2)], 0 < τ < 1,

−τ − εk[sin (πτ − πτ∗/2) + (1 − 2τ ) sin (πτ∗/2)], −1 < τ < 0,
(59a)

where

k =
3 − γ

π3/2
√

γ + 1
. (59b)

The left-wave solution can be obtained from the right-wave solution by the substitu-
tions (y → y − 2) and (z → z + 2) into (54), for 0 < τ < 2 and −2 <τ < 0, respectively.

Using (21), we write the vibrational frequency in the form

f =
2fres

2 + εT1(τ∗)
, (60)

where T1(τ∗) is given by (58c) for a sinusoidally oscillating piston. Using (58c), (60),
we define a resonance band as fmin < f < fmax, where

fmin = fres

(
1 +

2
√

γ + 1

π3/2
ε

)−1

, fmax = fres

(
1 − 2

√
γ + 1

π3/2
ε

)−1

. (61)

We introduce a dimensionless frequency φ defined as φ =(f − fres)/εf . From (60)
and (58c), we obtain

φ(τ∗) = −T1(τ∗)

2
= −2

√
γ + 1

π3/2
sin

(
πτ∗

2

)
. (62)

Hence, φ = 0 is equivalent to fres, while the resonance band corresponds to the range
φmin � φ � φmax, where

φ(−1) = φmin = −2
√

γ + 1

π3/2
, φ(1) = φmax =

2
√

γ + 1

π3/2
. (63)

For air with γ ≈ 1.4, the resonance band is within |φ| � 0.556.
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Figure 4. Time evolution of the pressure at the plug for a resonance tube with: (a) ε = 0.03;
(b) ε = 0.1; (c) ε = 0.3. Dotted lines, theory; solid lines, numerical.

We use the analytical model of resonance gas oscillations to calculate the time
evolution of gas pressure at the plug for a piston oscillating according to (7).
Figures 4(a), 4(b) and 4(c) present model predictions in comparison with numerical
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calculations for ε equal to 0.03, 0.1 and 0.3, respectively. In these figures, time is
measured from the moment when the piston is in the instroke position. For the lower
and upper bounds of the resonance band, corresponding to φmin and φmax, the pressure
changes continuously without a jump. This means that no shock travels in the tube
at these frequencies. However, there are abrupt pressure changes, which develop into
shocks for frequencies within the resonance band. Thus, shocks appear at φ = 0 and
φ = ±0.39, corresponding to τ∗ = 0 and τ∗ = ∓0.5, respectively. We see in figure 4
that the phase lags ϕ = π(1 − τ∗) between the piston instroke position and the shock
reflection from the plug are ϕ(φmin) = 0, ϕ(−0.39) = π/2, ϕ(0) = π, ϕ(0.39) = 3π/2 and
ϕ(φmax) = 2π. Hence, ϕ changes by 2π radians, when the frequency is increased from
φmin to φmax.

Figure 4(a) shows that for ε = 0.03, the analytical model fits the numerical results
very well for all φ. The curves practically coincide everywhere except in the vicinity
of the shock. Here, the deviation of the numerical model from the analytical one
is because the numerical model suffers from shock spreading caused by spatial
discretization. This spread is especially noticeable when the shock wave is weak as it
is in the case ε = 0.03. For ε = 0.1 (figure 4b), a discrepancy between the analytical
and numerical models can be observed. In particular, the models predict a different
time of shock reflection from the plug: the numerical model predicts that the shock
reflects somewhat before that predicted by the analytical model. The discrepancy
arises because of the asymptotic nature of the analytical model, which is of the
second order in ε. Still, for ε = 0.1, the agreement between the models is good. For
ε = 0.3 (figure 4c), the discrepancies in pressure magnitude and shock reflection time
between the models are significant, with the deviation being of the order of about ε3.
Hence, we conclude that the analytical model predicts the time of shock reflection with
accuracy of ε2, supporting the validity of (21). We also note that the difference in the
pressure magnitude between the models is larger for the post-resonance frequencies.
At φ = 0.39, the shock amplitude predicted by the numerical model exceeds that of
the analytical model by about 30%, as well as that at φ = 0. The analytical model
predicts maximum pressure jump at φ = 0.

The dimensionless pressure amplitude on the tube plug �P/(εP0), where �P =
Pmax − Pmin, is shown in figure 5. We see that the pressure amplitude has a maximum
inside the resonance band and sharply decreases near the resonance band bounds.
For ε = 0.03 and ε = 0.1, the numerically calculated pressure amplitude is in good
agreement with that obtained analytically, while for ε =0.3, a notable discrepancy
exists. For ε = 0.3, the analytical �P exceeds that calculated numerically for the pre-
resonance frequencies, φ < 0, and underestimates it for the post-resonance frequencies,
φ > 0, for which the difference is most significant.

In order to understand the cause of the large discrepancy between the models at
φ > 0, we calculate numerically the pressure amplitude �P for a wide frequency range.
Figure 6 shows �P/(εP0) versus the dimensionless vibrational frequency f/fres, for
ε equal to 0.03, 0.1 and 0.3. For ε = 0.03 and ε = 0.1, there are sharp maxima of �P

in the vicinity of f/fres = 1, while for larger f/fres the pressure amplitudes steadily
decrease. In the case of ε = 0.3, the resonance band around f/fres =1, is significantly
wider than for ε = 0.03 and ε = 0.1, because the resonance band width is proportional
to ε (see (61)). Moreover, for ε = 0.3, additional local maxima exist at f/fres ∼1.33 and
f/fres ∼1.5. The numerical simulations show that for these frequencies sub-resonance
gas oscillations are excited. In figure 7, we present the time evolution of the pressure
at the plug for f/fres = 1.5 and ε = 0.3. The pressure oscillates with a periodicity
equal to 3 piston periods. One can see that six interactions between the plug and the
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Figure 6. Dimensionless pressure amplitude �P/(εP0) versus dimensionless frequency
f/fres, where fres is the first resonance frequency, for tubes with different ε.

shock take place during one pressure period. This means that two shock waves travel
in the resonance tube simultaneously when f/fres =1.5. This result can be described
theoretically using our approach. Rather than present a full description here, we
delineate the main stages only.

As mentioned above, the function κ describes free oscillations of the gas of order
ε2. Bearing this in mind and the results of numerical simulations, this function can be
presented as a superposition of (discontinuous) functions with periods T/Tres =1+1/n,
where n= 2, 3, . . . . . By doing so all sub-harmonic shock waves can be investigated
by the method described in § 3. The resulting equations for the function κ can be
found on the basis of periodicity, boundary, shock wave and global mass conservation
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Figure 7. Time evolution of the pressure at the plug for a tube with ε = 0.3 and vibrational
frequency f/fres = 1.5, where fres is the first resonance frequency.

conditions. After cumbersome calculations, the resulting equations of order ε3 can be
derived.

However, such an approach is of a more academic than practical interest, since the
effect of sub-harmonic resonance oscillations is significant for large ε only. It should
be noted that ε = 0.3 corresponds to a piston velocity of about 100 m s−1. To the best
of our knowledge, no resonance tube has yet been built that would provide such high
velocities.

5.2. Average hydrodynamic properties

In this subsection, we calculate the average heat and pressure distributions along
the tube caused by periodic shock waves. Such distributions were first addressed
by Merkli & Thomann (1975b). They stated that prediction of these distributions
“should be possible by an extension of Chester’s (1964) theory”. In § 5.1, we showed
the additional second-order terms, which do not appear in Chester’s solution. Below
we assess the effect of these terms on the time-average values.

For any hydrodynamic property Γ , one can calculate a time-average value in a
cross-section with coordinate x as follows:

〈Γ 〉t ≡ 1

T




t−(x)∫
−T/2

Γl dt +

t−(x)∫
t+(x)

Γr dt +

T/2∫
t+(x)

Γl dt


, (64a)

where Γl and Γr are the left- and right-wave values of Γ , and t−(x), t+(x) are the
moments when the shock reaches coordinate x. These moments can be expressed in
terms of the function f (x) as

t+(x) = x + ε
T1

2
x − ε

(3 − γ )

4
f ′(2x − 1), (64b)

t−(x) = −x − ε
T1

2
x − ε

(3 − γ )

4
f ′(1 − 2x). (64c)
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The time-average hydrodynamic properties can be rewritten in terms of a function
g(x) as follows:

〈ρ〉t − ρ0

ρ0ε2
= (3 − γ )g(x), (65a)

〈P 〉t − P0

P0ε2
= γ

[
g(x) +

γ − 1

2
g(0)

]
, (65b)

〈θ〉t − θ0

θ0ε2
=

γ − 1

2
[g(x) + (γ − 2)g(0)]. (65c)

Here, the function g (x) is given by

g(x) =

x∫
−x

f ′(y)f ′(z) dt +

2−x∫
x

f ′(y − 2)f ′(z) dt

=

1−2x∫
−1

f ′(ζ )f ′(ζ + 2x) dζ +

1∫
1−2x

f ′(ζ )f ′(ζ + 2x − 2) dζ (66)

and has the following properties:

g(x) = g(1 − x), g(0) = K,

1∫
0

g(x) dx = 0, (67)

where the constant K is given by (46c). According to (67), the function g(x) is
symmetric within the interval x ∈ [0, 1] and has a zero average. The latter property
can be assessed by integration of (65a) over the tube length and taking into account
mass conservation. It is important to stress that the mean pressure and temperature
deviate from their initial values, P0 and θ0, respectively. Integrating (65b, c) over the
tube length yields

〈P 〉t,x − P0

P0ε2
=

γ (γ − 1)

2
K, (68a)

〈θ〉t,x − θ0

θ0ε2
=

(γ − 1)(γ − 2)

2
K, (68b)

where 〈〉t,x denotes averaging over an oscillation period and tube length. We see
that the deviations of the average values are proportional to K yielding a physical
meaning for this constant.

Bearing in mind that for most gases the adiabatic exponent γ is close to unity,
one can use (65b, c) to compare thermal and pressure gradients. Estimating the ratio
of these gradients as 2γ /(γ − 1), we see that the thermal gradient is weaker than
the pressure gradient. For example, for air with γ ≈ 1.4, the pressure gradient is
2γ /(γ − 1) ≈ 7 times higher than the thermal gradient.

Using (58a, c) and (66) for the particular case of sinusoidal piston motion, we obtain

g(x) = −4[4 − 4 cos πτ∗ − π2 cos πx + 2π2x cos πx + 2π cos πτ∗ sin πx]

π3(1 + γ )
. (69)

We now compare the theoretical predictions (65b, c) with the results of numerical
simulations. Such comparisons for f = fres and different ε are presented in figures 8(a)
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Figure 8. Time-average gas (a) pressure and (b) temperature versus dimensionless tube
coordinate calculated for f = fres and different ε for sinusoidal or crank piston drives. The
dash-dotted line is the prediction of Chester’s theory.

and 8(b), where the time-average pressure and temperature are shown, respectively.
The calculations are performed for two types of piston drive mechanisms; the first is
the sinusoidal (7) and the second is the crank mechanism (8) with λ= 1

3
. The average

pressure and temperature have a minimum at x = 0.5 and maximum values at the
tube ends, which corresponds to experimental observations (Saenger & Hudson 1960;
Merkli & Thomann 1975b; Zaripov & Ilhamov 1976). For f = fres, the time-average
pressure and temperature, calculated by the analytical model, agree with the numerical
data for both drive mechanisms. Only a slight difference of less than 4% between the
analytical and numerical modes is observed for ε as large as ε =0.3.

In figure 8, we see that the time-average pressure and temperature depend on the
type of piston drive mechanism. For the sinusoidal drive, the average values are
larger than those for the crank mechanism by about 15%. Hence, by an appropriate
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Figure 9. Time-average gas (a) pressure and (b) temperature versus dimensionless tube
coordinate calculated for f = fmin and different ε. The dash-dotted line presents the prediction
of Chester’s theory.

choice of the piston drive mechanism, any desired hydrodynamic gas properties can
be obtained. This finding can be of importance in engineering practice.

We found that the most significant difference between the analytical and numerical
models is at fmin and fmax. In figures 9(a) and 9(b), we present the average pressure
and temperature, respectively, at f = fmin. It can be seen in these figures that the dif-
ference increases with increasing ε. This is due to the asymptotic nature of the
theoretical model, which disregards terms of the third and higher orders affecting the
average values. Our numerical model inherently accounts for the nonlinearity of gas
flow. Hence, we use the numerical predictions to estimate the error of the theoretical
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model. Figures 10(a) and 10(b) present the theoretical model deviation from the
analytical model for gas pressure and temperature for different ε. The curves are
close to each other and of order of ε3. Hence, the theory is accurate up to the order
ε2. The second-order terms are responsible for pressure and temperature gradients
along the resonance tube. The prediction of the gradients for any frequency within
the resonance band is one of the new results obtained in this work.

We calculate the hydrodynamic velocity averaged over a single vibrational period.
Note that the analytical solution of the second order predicts zero average velocity,
i.e.

〈u〉t = 0. (70)
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Figure 11 presents the period-average gas velocity normalized by ε3, which is
calculated numerically for f = fres. The average velocity caused by the gas compressi-
bility is non-zero everywhere except in the vicinity of the plug. We see that the average
velocity is of order of ε3 and, therefore, cannot be predicted by our analytical model.
It should be noted that 〈ρu〉t is zero for both models, thus no permanent mass
transfer occurs along the resonance tube.

5.3. Energy balance

The analytical solution of the problem of resonance gas oscillations disregards gas
heating by assuming isentropic flow. In this section, we discuss a possible extension
of the solution to a more practical case. We start from the calculation of energy
generated by the vibrating piston. Using the expression for the right-side velocity
and pressure, we calculate the energy generated by the piston per unit time and
cross-section area as

Ep = − 1

T

T∫
0

Pu|x=1 dt =
(γ + 1)

12
[f ′(1) − f ′(−1)]3ε3, (71a)

where

f ′(1) − f ′(−1) = A

√
x

(2)
p (π − πτ∗) − x

(2)
in

2
(71b)

is the density jump at the shock wave given by (50). When τ∗ = 0 the jump is maximal,
and zero when τ∗ = ±1.

In order to sustain periodic gas motion, external cooling q̃0 (see (1c)) should be
applied to the tube wall to continuously remove the heat generated by the work
input to the piston. This means that q̃0 = q̃p + q̃vis, where q̃p is the mechanical energy
input from the vibrating piston to the inviscid gas by shock waves and q̃vis the
viscous dissipation of the kinetic energy of the gas. In addition to these two modes
of heat generation, there is also a heat interaction between the gas and the wall due
to temperature variations in the gas, because of expansion and compression. This
interaction does not enter the overall heat balance, because the heat removed from
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the compressed gas is balanced by that added to the rarified gas, resulting in a net
zero heat interaction (Merkli & Thoman 1975b).

Using equations (71), we obtain the heat generated by shock waves within the
inviscid gas as

q̃p = −Epρ̃0C̃
3
0/L̃. (72)

In the case q̃vis =0, the energy dissipated by the shock waves, Esh, should be equal to
that generated by the piston, Ep:

Esh = Ep. (73)

This energy balance condition was used by Betchov (1958) and Temkin (1968) for the
closure of their models. It is easy to ascertain that (73) is identically satisfied in our
model. To prove this, substitute (50) and (4) into relation (3) and compare the result
with (71).

In the absence of cooling, the gas temperature in the tube increases continuously. In
order to understand the thermal processes occurring in such a condition, we consider
an inviscid adiabatic problem, in which no thermal interaction takes place between
the gas inside the tube and the tube wall.

Aganin et al. (1996) accounted numerically for heat production. Their solution
predicted aperiodic pressure changes and a rapid increase in gas temperature. We
therefore explain the aperiodic nature of the adiabatic formulation as follows. Because
of the adiabatic boundary, heat generated by the shock wave leads to a continuous
increase in the average gas temperature θ̄ , resulting in an increase in the speed of
sound. As a result, the resonant frequency fres(θ̄ ) and, accordingly, the resonance
band are shifted towards the upper frequencies. The gas temperature continues to rise
until the fixed piston frequency fp = fres(θ0), becomes less than fmin(θ̄ ). Outside the
resonance band there are no shocks and, hence, no heat generation.

From the linear resonance frequency definition, a relation between the dimensionless
resonance frequency, fres, and the dimensionless average temperature, θ̄ , can be written
as

fres

fp

=

√
θ̄

θ0

, (74)

where fp = 1/2 and θ0 = 1. As we show later, the time variation of θ̄ is of the third
order in ε, and does not affect the second-order solution, which is derived in § 3 for a
fixed average gas temperature with the oscillation frequency as a variable parameter.
We now use the solution for a different problem where the oscillation frequency is
fixed and the gas temperature changes. Substituting (21) into (74), and retaining the
leading-order terms, we obtain

θ̄ = 1 − εT1(τ∗), (75)

where the dependence of T1 on τ∗ arises from (51). Equation (75) indicates that the
detuning function T1(τ∗) describes the difference between the initial temperature θ̃0

and the current temperature, which changes due to gas heating. The parameter τ∗
governs not only the temperature increase but also heat generation Ep via equations
(71a, b). Equating the rate of temperature increase and heat generation, the equation
of the energy balance is

dT1(τ∗)

dτ1

= −ε−3Ep(τ∗), (76)
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Figure 12. Temperature gain at the plug caused by a piston vibrating with f̃ = 47 Hz in a
tube with ε = 0.137 versus the number of oscillation periods: dotted line – adiabatic analytical
model (equation (78)); solid line – adiabatic numerical model; circles – experimental data of
Alexeev et al. (2002).

where τ1 = ε2τ . Since Ep is of order ε3 (see (71a)), the right-hand side of (76) is of
the same order in ε as the left-hand side.

For the particular case of sinusoidal piston motion (7), Ep(τ∗) and T1(τ∗) appearing
in (71) and (51) can be expressed via elementary trigonometric functions, and equation
(76) can be integrated to yield

τ1 = −3(γ + 1)

4
tan

(
πτ∗

2

)
. (77)

We combine (58b), (75) and (77) to obtain the time evolution of the gas temperature
in the resonance tube as

θ̄ (τ ) = 1 + ε
4

√
γ + 1

π3/2
sin (z), (78)

where z = tan−1( 4
3
ε2(γ + 1)−1τ ).

In figure 12, we compare the temperature predicted by the model (78) with numerical
data for an adiabatic resonance tube. The calculation is performed for a resonance
tube, L̃ = 367.7 cm long and 5.5 cm in internal diameter, which was used in the
experiments of Alexeev et al. (2002). This tube can be characterized by ε =0.137 and
the first linear resonance frequency of about f̃ res = 46.7 Hz. As seen, the temperature
increase calculated by (78) is in good agreement with the numerical simulation. The
difference between the models does not exceed 5%. Initially, the temperature increase
is rather vigorous since the piston frequency is close to the first linear resonance
frequency, when the heat generation is most intensive. As the temperature increases,
the resonance frequency goes up resulting in more minor heat generation. Now,
the temperature increases slowly, till it approaches a constant, for which the piston
frequency corresponds to the lower bound of the resonance band.

In the adiabatic analytical model, we assume a constant gas temperature during a
single period. This assumption is verified by the numerical results (figure 12), where
the temperature gain during one period does not exceed 0.5 ◦C. Hence, for times
of the order of a single period, the adiabatic problem can be approximated by the
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isentropic one. That is why we use the isentropic heat sink term of (73) to calculate
the temperature gain in the adiabatic problem. The fact that the analytical results
agree with the numerical model, attests to the relevance of this procedure.

In the adiabatic problem depicted in figure 12, we obtain a final temperature gain
of about 45 ◦C. This result contradicts the experimental data of Alexeev et al. (2002),
which show that the temperature gain is less than 3 ◦C. Moreover, the gas oscillations
are practically periodic and remain within the resonance band throughout the duration
of the experiment, because of a heat interaction between the gas and the tube. As
a result of this interaction, all the heat generated during gas motion is removed,
and, therefore, periodic gas oscillations are sustained. Hence, in such experimental
conditions, resonance gas oscillations correspond to the pseudo-isentropic case, when
q̃0 is given by (73) for an inviscid gas.

Viscosity and thermal conductivity of a gas lead to additional heat effects in the
viscous boundary layer. To obtain some knowledge about these effects, we consider a
particular case of gas oscillation in a resonance tube characterized by the following
conditions: (i) the thickness of the Stokes boundary layer is small compared to the
tube radius; (ii) the wall temperature is constant; (iii) the piston frequency is outside
the resonance band. For this special case, Rott (1980) calculated the thermal exchange
between the boundary layer and the core flow caused by acoustic streaming in
the form

Q̃bound = ρ̃0C̃
3
0 (k1 + k1k2 cos(2πx))ε2, (79a)

where

k1 = A2

(
1 +

γ − 1√
Pr

)√
πν̃

8L̃C̃0

, (79b)

k2 =
γ (1 + Pr) + (1 − Pr)(1 +

√
Pr)

γ (1 + Pr) − (1 + Pr)(1 −
√

Pr)
; (79c)

here ν̃ is the gas kinematic viscosity and Pr is the Prandtl number.
Equation (79) indicates that the heat flux through a unit area of the tube wall Q̃bound

consists of two parts: a constant and an alternating flux along the tube. The constant
part describes gas heating, while the alternating one denotes gas cooling around the
middle cross-section of the tube and heating around the tube ends. Bearing in mind
that the second term does not change the total energy of the gas, the heating caused
by gas viscosity can be written in the form

q̃vis = 4k1ε
2ρ̃0C̃

3
0/d̃, (80)

where d̃ is the tube diameter. Comparison of this heat source with that obtained for
an inviscid gas (see (71), (72)) under resonance yields

q̃vis

q̃p

=
4k1ε

2

Ep

L̃

d̃
=

48

(γ + 1)A3

k1L̃

εd̃
. (81)

For typical experimental conditions, this ratio is less than 1. For example, for the
experiments of Alexeev et al. (2002) q̃vis/q̃p it is about 0.6. The second term of the

heat flux, Q̃bound, which accounts for acoustic streaming, leads to a pressure gradient
along the tube wall, in the form

�Pacous = 4k1k2ε
2(L̃/d̃)t cos(2πx). (82)
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This expression can be compared with the inviscid one of (65b), (69). Both are of
second order with respect to ε, and have similar profiles with a minimum in the
middle cross-section and maxima at the tube ends. The most important difference
between these two cases is that the inviscid pressure gradient is independent of time
and tube diameter, while the viscous one increases linearly with time and strongly
depends on the tube diameter. It is instructive to compare the pressure amplitudes
(i.e. differences between the maximal and minimal values of pressure along the tube)
of both profiles. Simple calculations yield the following linear time dependence:

�Pacous

�Psh

=
2π2(γ + 1)k1k2L̃

(2 + π)γ d̃
t. (83)

For typical experimental conditions, the prefactor in equation (83) is small. For
example for experimental conditions of Alexeev et al. (2002) �Pacous/�Psh ≈ 0.1t .
This means that the inviscid pressure gradient dominates for times of the order of
the resonance period, while the viscous one dominates for large times.

In fact, heat and viscous interactions reduce the amplitude of gas oscillations
(Alexeev et al. 2002). Hence, these interactions should be incorporated into the analysis
of gas oscillations. These interactions are most pronounced in the case of turbulent
gas flow. Merkli & Thomann (1975a) found that the onset of turbulence occurs
outside the resonance band, where no shocks exist. The critical Reynolds number
Reδ =

�
u

√
2/νω̃ above which the flow is turbulent, was found to be Recrit

δ = 283. Here,
�
u is the axial velocity amplitude. Based on this result, Alexeev & Gutfinger (2003)
obtained a criterion for the critical tube parameter as

εcrit ≈ Recrit
δ

1.4

√
πν

2C̃0L̃
.

When ε < εcrit, gas flow at resonance is laminar and when ε > εcrit, it is turbulent.
For ε > εcrit, an ad-hoc numerical model was proposed by Alexeev et al. (2002).
More recently, Alexeev & Gutfinger (2003) treated gas oscillations in a resonance
tube numerically, using the turbulence model of Wilcox (1993). Unfortunately, no
analytical solution of turbulent gas oscillations in a resonance tube exists to date.
Hence, we cannot extend our analytical model to the case of turbulent viscous flow.
For tubes with ε < εcrit, where the flow is laminar, the viscous terms can be included
into our analytical model as suggested by Chester (1964). In a similar way the effect
of heat interaction between the gas and the tube wall may be incorporated into the
analytical model, thereby extending it to the case of adiabatic resonance oscillations
of a viscous gas. The treatment of this problem is left for a future work.

6. Conclusions
An analytical model of inviscid gas oscillation inside a resonance tube was derived

for an arbitrary law of piston motion. The model describes gas oscillations within
a resonance band about the linear resonance frequency fres, in which gas flow is
accompanied by a shock wave propagating periodically back and forth along the
tube. The model was obtained by a perturbation method accounting for terms of the
second order of a small parameter ε =

√
πl̃/L̃. We have shown that some second-order

terms were omitted in the previous works. These terms affect the model prediction
of spatial gradients of the time-average gas temperature, pressure and density. Such
temperature gradients were measured earlier by Merkli & Thomann (1975b). We
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found that the gradients are controlled by the law of piston motion, and strongly
depend on the value of the adiabatic exponent γ of the gas.

The isentropic and adiabatic problems were considered. Under adiabatic boundary
conditions, the gas is heated continuously by irreversible energy dissipation through
the shock wave. As a result, the average gas temperature increases steadily resulting
in aperiodic gas oscillations. After some time, the oscillation frequency moves out of
the resonance band and the flow becomes continuous. An analytical description of
the aperiodic gas oscillations was obtained, leading to an expression for the average
temperature evolution.

In parallel, a numerical model of resonance gas oscillation was developed. Since
the numerical model intrinsically accounts for the nonlinearity of gas flow, we used
the numerical solution to verify our analytical model. We considered two types
of piston drive: a pure sinusoidal oscillator (7), and a crank mechanism (8). We
compare different instantaneous and average hydrodynamic gas parameters. Good
agreement was obtained between the analytical and numerical models everywhere in
the resonance band. It was shown that the discrepancies between the models are of
the order of ε3. Hence, we conclude that the accuracy of the analytical model is of
the order of ε2.

We found numerically that for ε = 0.3, gas motion about the first resonance is
affected by the resonances at f/fres = 1.33 and f/fres = 1.5. The existence of such
resonances, when two shock waves travel simultaneously, has not been reported
before and, hence, it requires further investigations. Our analytical model disregards
these additional resonances that increase the discrepancy between the models for
ε = 0.3. However, this discrepancy is of the order of ε3.

For the case of adiabatic oscillations, the temperature gain predicted by the
analytical model was compared with numerical data, resulting in good agreement.
For typical experimental conditions, the temperature gain is significantly less than
that calculated from the adiabatic model, because of heat interactions between the
gas and the tube. Experiments show that such interactions remove practically all
the heat dissipated within the tube, and lead to a constant average gas temperature
corresponding to the pseudo-isentropic problem formulation. For this case, the amount
of heat to be removed from the inviscid gas was calculated. For the case of laminar
gas flow at ε < 0.1, the analytical model may be further extended to incorporate terms
accounting for the effect of viscous and heat interactions between the gas and the
tube.

Partial support of this work by the Israel Science Foundation, grant no. 53/01 is
gratefully acknowledged.
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